Effects of growth differentiation factor 9 on cell cycle regulators and ERK42/44 in human granulosa cell proliferation.
نویسندگان
چکیده
GDF-9 stimulates granulosa cell proliferation and plays important roles during folliclogenesis. However, its molecular mechanisms are still far from clear, particularly its roles in human granulosa cells around the periovulatory stage. Therefore, we investigated the effects of GDF-9 on cell cycle distribution, regulatory molecules, and signaling pathways involved in human luteinized granulosa (hLG) cells in vitro. Primary cultures of hLG cells obtained from women undergoing IVF and treated with and without recombinant GDF-9 were evaluated with and without a specific inhibitor to activin receptor-like kinase 5 (ALK5; SB-431542), ERK42/44 (PD-098059), or Smad3 (SIS3). Cell proliferation, cell cycle distribution, mRNA expression, and protein expression of relevant cell cycle molecules were determined by [(3)H]thymidine incorporation, flow cytometry, quantitative PCR, and immunoblotting, respectively. GDF-9 stimulated [(3)H]thymidine incorporation, enhanced cell transition from G(0)/G(1) to S and G(2)/M phases (whereas both SB-431542 and PD-098059 attenuated these changes), increased mRNA and protein expression of cyclin D(1) and E, and decreased those of the cyclin-dependent kinase (CDK) inhibitors p15(INK4B) and p16(INK4A). GDF-9 also activated Rb protein (a critical G(1) to S-phase regulator), ERK42/44, and Smad3. PD-098059 blocked Rb protein phorsphorylation and the increase in cyclin D(1) and E but not the decrease in p15(INK4B) and p16(INK4A) induced by GDF-9. In contrast, SIS3 reversed the decrease in p15(INK4B) and p16(INK4A) but not the increase in cyclin D(1) and E induced by GDF-9. GDF-9 stimulates hLG cell proliferation by stimulating cyclin D(1) and E and suppressing p15(INK4B) and p16(INK4A) via both Smad-dependent and Smad-independent pathways.
منابع مشابه
New Horizons in Enhancing the Proliferation and Differentiation of Neural Stem Cells Using Stimulatory Effects of the Short Time Exposure to Radiofrequency Radiation
Mobile phone use and wireless communication technology have grown explosively over the past decades. This rapid growth has caused widespread global concern about the potential detrimental effects of this technology on human health. Stem cells generate specialized cell types of the tissue in which they reside through normal differentiation pathways. Considering the undeniable importance of stem ...
متن کاملEffect of Different Concentrations of Forskolin Along with Mature Granulosa Cell Co-Culturing on Mouse Embryonic Stem Cell Differentiation into Germ-Like Cells
Background: Germ cell development processes are influenced by soluble factors and intercellular signaling events between them and the neighboring somatic cells. More insight into the molecular biology of the germ cell development from embryonic stem (ES) cells and investigation of appropriate factors, specifically those targeting differentiation process, is of great importance. In this study, w...
متن کاملP-29: Effects of Growth Factors and GranulosaCell Coculture on In vitro Maturation ofOocytes
Background: The maturation medium for in-vitro oocyte maturation is usually supplemented with serum. However, supplementation of serum from pregnant women adversely affects the outcome of in-vitro maturation. The purpose of the study was to assess if growth factors or granulosa cell coculture could overcome the adverse effects of pregnant women’s serum. Materials and Methods: The basal maturati...
متن کاملEvaluation of Transforming Growth Factor Beta 1 and Curcumin on Proliferation and Differentiation of Nasal-Derived Chondrocyte Seeded on the Fibrin Glue Scaffold
Introduction: Natural biomaterials and growth factors are key factors in tissue engineering. The objective of the present study was to evaluate transforming growth factor beta 1 (TGF-β1) and curcumin on proliferation and differentiation of nasal-derived chondrocyte seeded on the fibrin glue scaffold. Methods: Chondrocytes were isolated from nasal samples. Nasal-derived chon...
متن کاملProduction and functional characterization of human insulin-like growth factor 1
Insulin-like growth factor 1 (IGF-1) is a polypeptide hormone produced mainly by the liver in response to the endocrine growth hormone (GH) stimulus. This protein is involved in a wide range of cellular functions, including cellular differentiation, transformation, apoptosis suppression, migration and cell-cycle progression and other metabolic processes. In the current study, human heart cDNA w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 296 6 شماره
صفحات -
تاریخ انتشار 2009